Synthesis of Polyamine Macrocycles and **Cryptands Incorporating Bipirydine and Phenanthroline Moieties**

Andrea Bencini,^{*,†} Antonio Bianchi,^{*,†} Claudia Giorgi,[†] Vieri Fusi,[‡] Andrea Masotti,[†] and Piero Paoletti^{*,[†]}

Department of Chemistry, University of Florence, Via Maragliano 75/77, 50144 Florence, Italy, and Institute of Chemical Sciences, University of Urbino, Pza Rinascimento 6, 61029 Urbino, Italy

benc@chim1.unifi.it

Received June 20, 2000

Introduction

Polyamine macrocycles may constitute an excellent basis for the study of molecular recognition of different kind of substrates, such as inorganic or organic cations,¹⁻⁶ anionic species,⁶⁻¹³ and neutral molecules.¹⁴ Metal coordination by polyazamacrocycles have been widely investigated, to design selective complexing agents, ionophores, and catalysts. Furthermore, even without the involvement of metal cations, protonated species of polyazamacrocycles are effective receptors for negative substrates, such as carboxylate or phosphate anions,

- (1) Bradshaw, J. S. Aza-crown Macrocycles; Wiley: New York, 1993.
 (b) Izatt, R. M.; Bradshaw, J. S.; Nielsen, S. A.; Lamb, J. D.; Christensen J. J.; Sen, D. Chem. Rev. 1985, 85, 5, 271. (c) Krakowiak V. E. Bradshaw, J. S. (2017)
- K. E.; Bradshaw J. S.; Zamecka-Krakowiak, D. J. Chem. Rev. 1989, 89, 929. (d) Izatt, R. M.; Pawlak, K.; Bradshaw J. S. Chem. Rev. 1995, 95. 5. 2529
- (2) Gokel, G. W. Crown Ethers and Cryptands; Stoddart, J. F., Ed.; The Royal Society of Chemistry: Cambridge, UK, 1991. (3) Lehn, J. M Angew. Chem., Int. Ed. Engl. **1988**, 27, 89. (b) Mertes,

K. B.; Lehn, J. M. In Comprehensive Coordination Chemistry, Wilkin-Son, G., Ed.; Pergamon: Oxford, 1987; p 915. (b) Lehn, J. M. Supramolecular Chemistry; VCH: New York, 1995.
(4) Nelson, J.; McKee, V.; Morgan, G. in Progr. Inorg. Chem.; Karlin,

K. D., Ed.; Wiley: New York, 1998, 47, p 167.
(5) Bencini, A.; Bianchi, A.; Paoletti, P.; Paoli, P. Coord. Chem. Rev.

1992, *120*, 51. (b) Bazzicalupi, C.; Bencini, A.; Fusi, V.; Giorgi C.; Paoletti P.; Valtancoli, B. *Inorg. Chem.* **1998**, *37*, 941. (c) Bazzicalupi, ; Bencini, A.; Berni, E.; Fedi, V.; Fusi, V.; Giorgi C.; Paoletti P.;

 Valtancoli, B. *Inorg. Chem.* 1999, 4115.
 (6) Izatt, R. M.; Pawlak, K.; Bradshaw, J. S.;. Bruenig, R. L. *Chem.* Rev. 1991, 91, 1721.

(7) Bianchi, A.; Garcia-España, E.; Bowman-James, K., Eds.; Su-(i) Blatterin, A., Guicar E., Boyman, E., Downan, S. K., Bass, M., Prandecular Chemistry of Anions, Wiley-VCH: New York, 1997.
 (8) Hosseini, M. W.; Blaker, A. J.; Lehn, J.-M.J. Am. Chem. Soc.

1990, *112*, 3896.

(9) Aguilar, J. A.; Garcia-España, E.; Guerrero, J. A.; Luis, S. V.; Llinares, J. M.; Miravet, M. F.; Ramirez J. A.; Soriano C. J. Chem. Soc., Chem. Commun. 1995, 2237.

(10) (a) Schneider, H.-J.; Blatter, T.; Palm, B.; Pfingstag, U.; Rüdiger, V.; Theis, I. J. Am. Chem. Soc. **1992**, 114, 7704. (b) Eliseev A. V. and Schneider, H.-J. J. Am. Chem. Soc. 1994, 116, 6081 and references therein.

(11) (a) Bazzicalupi, C.; Beconcini, A.; Bencini, A. Fusi, V.; Giorgi, C.; Masotti, A.; Valtancoli, B. *J. Chem. Soc., Perkin Trans. 2* **1999**, 1675. (b) Bazzicalupi, C.; Bencini, A.; Bianchi, A.; Cecchi, M.; Escuder, B.; Fusi, V.; E. Garcia-España, Giorgi, C.; S. V. Luis, Maccagni, G.; Marcelino, V.; Paoletti, P.; Valtancoli, B. *J. Am. Chem. Soc.* **1999**, *121*, 6807

(12) (a) Mertes M. P.; Mertes K. B. Acc. Chem. Res. 1990, 23, 413.
(b) Mason, S.; Clifford, T.; Seib, L.; Kuzcera, K.; Bowman-James, K. J. Am. Chem. Soc. 1998, 120, 8899.

(13) Krål, V.; Furuta, H.; Shreder, K.; Lynch, V.; Sessler, J. L. J. Am. Chem. Soc. 1996, 118, 1595.
 (14) Izatt, R. M.; Bradshaw J. S.; Pawlak, K.; Bruening, R. L.; Tarbet, Chem. Rev. 1992, 92, 2, 1261.

through charge-charge and hydrogen bonding interactions and can also catalyze hydrolytic reactions and syntheses of nucleotides, such as ATP.7-12

We have now synthesized a series of new macrocyclic receptors containing a bipirydine moiety as integral part of a polyamine macrocyclic structure. The insertion of a bipirydine unit can provide a further binding site for both metal cations and nucleotide anions. This unit is rigid and provides two aromatic nitrogens whose unshared electron pairs may act cooperatively in binding cations. At the same time, the heteroaromatic moiety may offer an optimal binding site for the coordination of nucleotide anions or nucleobases, through π -stacking and hydrophobic interactions. Incorporation of bipirydine into macrocyclic structures allows to combination within the same ligand the special complexation features of macrocycles with the versatile photoactivity displayed by the metal complexes of this heterocycle.^{15,16} Actually, the photophysical properties of the Eu(III), Tb(III), and Ru-(II) complexes with bipirydine-containing cryptands, such as $\mathbf{1}^{15a,b}$ and $\mathbf{2}$, ^{15f} have been extensively studied in the past few years.

An attractive perspective is the use of the ligands herein reported for simultaneously metal binding, through coordination of the metal to the heteroaromatic nitrogen atoms, and proton binding, through protonation of the more basic amine groups of the aliphatic chain giving rise to "pH-modulated" luminescent complexes. Such a behavior has been recently found for the Eu(III) complex with **3**.¹⁷

Results and Discussion

Macrocycles 13-15 were obtained by following the synthetic procedure depicted in Scheme 2. The disodium salts of the tosylated amine 7,18 8,19 and 920 were obtained according to the general procedure of Richman and Atkins.²¹ Reaction of 6,6'-bis(bromomethyl)-2,2'-bipyri-

(18) Bencini, A.; Bianchi, A.; Garcia-España, E.; Fusi, V.; Micheloni, M; Paoletti, P; Ramirez, J. A.; Rodriguez, A.; Valtancoli, B. J. Chem. Soc., Perkin Trans. 2 1992, 1059.

(19) Bencini, A.; Bianchi, A.; Garcia-Espanã, E.; Giusti, M.; Micheloni, M.; Paoletti, P. *Inorg. Chem.* 1987, 26, 681.
(20) Bencini, A.; Bianchi, A.; Garcia-Espanã, E.; Micheloni, M.; Paoletti, P. *Inorg. Chem.* 1988, 26, 176.

[†] University of Florence.

[‡] Institute of Chemical Sciences.

⁽¹⁵⁾ Examples of previous reports on bipirydine-containing macrocycles or macrobicycles: (a) Rodriguez-Ubis, J.-C.; Alpha, B.; Plancher-el, D.; Lehn, J. M. *Helv. Chim. Acta* **1984**, *67*, 2264. (b) Alpha, B.; Lehn, J. M.; Mathis, G. Angew. Chem., Int. Ed. Engl. 1987, 26, 266. (c) Cesario, M.; Guilhem, J.; Pascard, E.; Anklam, E.; Lehn, J. M.; Pietraskiewicz, M., Helv. Chim. Acta **1991**, 74, 1157. (d) Bkouche-Waksmann, J.; Guilhem, J.; Pascard, E.; Alpha, B.; Deshenaux, Lehn, J. M., Helv. Chim. Acta 1991, 75, 1163. (e) Lehn, J. M.; Regnouf de Vains, J. B. *Helv. Chim. Acta* **1992**, *75*, 1221. (f) Roth, C.; Lehn, J.-M.; Guilheim, J.; Pascard, C. *Helv. Chim. Acta* **1995**, *78*, 1895 and references therein. (g) Azéma, J.; Galaup, C.; Picard, C.; Tisnès, P.; Ramos, O.; Juanes, O.; Rodrigez-Ubis, J. C.; Brunet, E. *Tetrahedron* 2000, 56, 2673 and references therein. (h) Newkome, G. R.; Pappalardo, S.; Gupta, V. K.; Fronczek, F. J. Org. Chem. 1983, 48, 4848 and references therein.

⁽¹⁶⁾ Barigelletti, F.; De Cola, L.; Balzani, V.; Belzer, P.; von Zelewsky, A.; Vögtle, F.; Ebmeyer, F.; Grammenudi, S. *J. Am. Chem.* Soc. 1989, 111, 4662; Balzani, V.; Ballardini, R.; Bolletta, F.; Gandolfi, M. T., Juris, A.; Maestri, M.; Manfrin, M. F.; Moggi, L.; Sabbatini, N. *Coord. Chem. Rev.* **1993**, *125*, 75 and references therein. (c) Sabbatini, N.; Guardigli, M.; Lehn J.-M. *Coord. Chem. Rev.* **1993**, *123*, 201. (d) Balzani, V.; Credi, A.; Venturi, M. Coord. Chem. Rev. 1998, 171, 3 and references therein.

⁽¹⁷⁾ Bazzicalupi, C.; Bencini, A.; Bianchi, A.; Fusi, V.; Giorgi, C.; Valtancoli, B.; Pina, F.; Bernardo, M. A. Chem. Commun. 2000, 561.

dine²² **5** with the disodium salts of **7–9**, carried out in anhydrous DMF, afforded, after purification by column chromatography, the tosylated macrocycles **10–12** in rather satisfactory yields (**10**, 68%; **11**, 30%; **12**, 28%).

The most interesting finding is the remarkably higher yield for **10** with respect to **11** and **12**. This effect cannot be attributed to different "length" of the precursor polyamines **7–9**, since both **7** and **8** present two similar pentaaza chains. The higher yield for **10**, therefore, can be ascribed to the larger flexibility of precursor **7**, due to the presence of three *N*-methylated amine groups which replace the three tosylated ones in **8**. Most likely, the larger flexibility may allow **7** to easily achieve a better conformation in order to react with the two bromomethyl functions of **5**, which are instead separated by the rigid and smaller bipirydine moiety.

The tosylated compounds 10-12 were finally deprotected in 33% HBr/CH₃COOH mixture, according to a previously reported procedure,^{5b} affording ligands 13-15 as hydrobromide salts. In the case of 13, the formation of the hexahydrobromide salt implies a rather unusual protonation of a heteroaromatic nitrogen atoms. In the case of similar phenanthroline- or bipyridyl-containing polyamine ligands, in fact, protonation preferentially takes place on amine groups, at least in aqueous solution.^{5b,11a} In the present case, protonation of the bipirydine moiety may be probably ascribed to the drastic acidic conditions used for ligand crystallization.

10 is a versatile precursor for the assembly of macropolycyclic structures, since it contains two secondary amine groups which can be connected by appropriate bridging moieties. Actually, reaction of **10** with 6,6'-bis-(bromomethyl)-2,2'-bipyridine **5** or 2,9-bis(bromomethyl)-1,10-phenanthroline²³ **6** gave the cryptands **3** and **4**, respectively (Scheme 1). The synthesis was carried out in CH₃CN in the presence of M₂CO₃ as base (M = Na or K). Separation by column chromatography (neutral alumina, CHCl₃) afforded the macrobicycles as their alkaline metal complexes ([M⊂**3**]Br and [M⊂**4**]Br), as shown by elemental analysis and FAB mass spectra. Although in

similar cyclizations the simultaneous formation of macrotricyclic ligands, derived from 2:2 cyclizations, has been sometimes observed,^{15g} in our case no macrotricyclic compound was isolated by using column cromatography. It is of interest that the yield of both cyclizations depends on the alkaline carbonate used. Both 3 and 4 were obtained in remarkably higher yields by using Na₂CO₃ as base ([Na⊂3]Br: 20.8%; [Na⊂4]Br: 24%). The formation of **3** and **4** was not observed by using Li₂CO₃, while minor amounts of the [K \subset **3**]Br (12%) and [K \subset **4**]Br (10%) complexes were isolated in the presence of K₂CO₃. On the other hand, the yield for the monocyclic ligands 10, 11, and 12 are not significantly affected by the alkaline metal carbonate used. A preliminary investigation on the metal coordination features of 3 and 4, carried out by means of potentiometric measurements in aqueous solutions, show that both cryptands form more stable complexes with Na⁺ with respect to Li⁺ and K⁺, probably due to a better dimensional matching between Na⁺ and the

 ⁽²¹⁾ Richman, J. E.; Atkins, T. J. J. Am. Chem. Soc. 1974, 96, 2268.
 (22) Wang, Z.; Reinbenspies, J.; Martell, A. E., J. Chem. Soc., Dalton Trans. 1995, 1511.

⁽²³⁾ Chandler, C. J.; Deady, L. W.; Reiss, J. A. J. Heterocycl. Chem. 1981, 18, 599.

macrobicyclic cavity.²⁴ At the same time, no interaction between 10, 11, or 12 and alkaline metals is found in aqueous solutions. These experimental observations strongly suggest that, in cryptand synthesis, the cyclizations are driven by a template effect, as already observed in other macrobicyclization procedures.¹⁶ In all cases, however, the final products are collected as their alkaline metal salts. Further purification of the Na⁺ complexes was performed by their precipitation as perchlorate salts, $[Na \subset 3]ClO_4$ and $[Na \subset 4]ClO_4$, which were obtained by treatment of aqueous solutions of $[Na \subset 3]^+$ and $[Na \subset 4]^+$ with NaClO₄ at alkaline pH's. Finally, simple addition of an ethanolic solution of HClO₄ to a ethanol solution of $[Na \subset 3]ClO_4$ and $[Na \subset 4]ClO_4$ at room-temperature allowed removal of the alkaline metal from the ligand cavity and recovery of 3 and 4 as their hydroperchlorate salts, 3.5HClO₄ and 4.5HClO₄, respectively. The corresponding "free" amine can be obtained by extraction with $CHCl_3$ of alkaline solutions containing 3.5HClO₄ or 4. 5HClO₄. This seems to be a noticeable difference from previously reported cryptands, such as **1**, whose Na⁺ complexes usually display a marked kinetic inertness. Actually removal of the metal from $[Na \subset 1]^+$ takes place by using more drastic conditions, such as transmetalation with Ag^+ followed by precipitation of Ag_2S in order to obtain 1 as uncomplexed ligand.^{15a} The much lower inertness of the present $[Na \subset 3]^+$ and $[Na \subset 4]^+$ complexes is probably due to the presence of the aliphatic pentaamine chain, which increases the ligand flexibility with respect to 1 and allows a prompt removal of the encapsulated alkaline metal cation. This allows to easy access to the free cryptands, as versatile precursors for different metal complexes.

Experimental Section

General. ¹H and ¹³C NMR spectra were recorded on a 300-MHz instrument. CF-FAB mass spectra were performed with a VG-7070EQ mass spectrometer. The mass spectra of compounds **13**, **14**, **15**, **3**, and **4** were performed on the "free" amines obtained by extraction with CHCl₃ of alkaline solutions containing their hydrobromide or hydroperchlorate salts. Na and K elemental analyses were performed with a Varian AA-475 atomic absorption spectrophotometer.

5,8,11-Trimethyl-2,14-ditosyl-2,5,8,11,14-pentaaza[15]-[15](2,2')[1,15]-bipyridylophane (10). A solution of sodium ethanolate, obtained by addition of small bits (ca. 200 mg each) of sodium (2.62 g, 0.11 mol) in dry ethanol (100 cm³), was added to a suspension of 7.3HCl (10.8 g, 0.02 mol) in ethanol (400 cm³). The resulting mixture was refluxed for ca. 30 min, and the solvent was then removed under reduced pressure. The solid residue was dissolved in DMF (500 cm³), and Na₂CO₃ (6 g, 0.057 mol) was added. To the resulting suspension, heated at 110 °C, was added 5 (7.0 g, 0.02 mol) in DMF (300 cm³) over a period of ca. 6 h. The reaction mixture was kept at 115 °C for 2 h. After being cooled at room temperature, the suspension was filtered out, and the solvent was evaporated to dryness. The crude oil was chromatographied on neutral alumina eluting with CHCl₃. The eluted fractions were collected and evaporated to dryness affording 10 as a white solid. Yield 9.75 g (68%). ¹H NMR (CDCl₃): δ 1.70 (m, 4H), 1.86 (s, 3H), 2.03 (m, 4H), 2.11 (s, 6H), 2.16 (t, 4H), 2.46 (s, 6H), 3.22 (t, 4H), 4.49 (s, 4H), 7.35 (d, 4H), 7.60 (dd, 2H), 7.77 (d, 4H), 7.80 (m, 2H), 8.28 (dd, 2H) ppm. 13C

NMR (CDCl₃) δ 21.6, 42.1, 43.1, 47.3, 55.6, 55.7, 55.8, 56.0, 119.9, 123.8, 127.2, 129.9, 136.0, 137.7, 143.5, 154.8, 156.8 ppm. Anal. Calcd for $C_{37}H_{49}N_7S_2O_4$: C, 61.73; H, 6.86; N, 13.62. Found: C, 61.75; H, 6.90; N, 13.64.

5,8,11-Trimethyl-2,5,8,11,14-pentaaza[15]-[15](2,2')[1,15]-bipyridylophane Hexahydrobromide (13·6HBr). Compound **10** (9.75 g, 0.014 mol) and phenol (70.0 g, 0.74 mol) were dissolved in 33% HBr/CH₃COOH (500 cm³). The reaction mixture was kept under stirring at 90 °C for 22 h until a precipitate was formed. The solid was filtered out and washed several times with CH₂Cl₂. The hexahydrobromide salt was recrystallized from a EtOH/water 2:1 mixture. Yield 7.4 g (59%). ¹H NMR (D₂O pH = 11): δ (ppm) 1.97 (3H, s), 2.17 (6H, s), 2.19 (4H, t), 2.35 (4H, t), 2.38 (4H, t), 2.70 (4H, t), 3.93 (4H, s), 7.51 (2H, dd), 7.98 (2H, dd), 8.02 (2H, dd). ¹³C NMR (D₂O pH = 11): δ (ppm) 42.26, 43.74, 45.51, 54.02, 54.66, 54.89, 56.54, 122.56, 125.49, 140.18, 156.54, 160.19 MS *m*/*z* 412 ([M +H]⁺). Anal. Calcd for C₂₃H₄₃N₇-Br₆: C, 30.80; H, 4.83; N, 10.93. Found: C, 30.78; H, 4.81; N, 10.91.

2,5,8,11,14-Pentatosyl-2,5,8,11,14-pentaaza[15]-[15](2,2')-[1,15]-bipyridylophane (11). This compound was synthesized from **8** (9.6 g, 0.01 mol) and **5** (3.42 g, 0.01 mol) following the procedure reported for **10**. The crude solid was chromatographied on neutral alumina eluting with CH_2Cl_2 :ethyl acetate (100:3). The eluted fractions were collected and evaporated to dryness, affording **11** as a colorless solid (3.46 g, 30.3%). ¹H NMR (CDCl₃): δ (ppm) 2.38 (s, 3H), 2.41 (s, 6H), 2.44 (s, 6H), 2.85 (m, 4H), 2.92 (m, 4H), 3.17 (m, 4H), 3.29 (m, 4H), 4.37 (s, 4H), 7.33 (m, 14H), 7.61 (d, 4H), 7.72 (d, 2H), 7.77 (d, 4H), 7.96 (d, 2H); ¹³C NMR (CDCl₃) δ (ppm) 21.3, 47.1, 48.4, 49.0, 49.5, 54.7, 120.1, 123.9, 127.3, 127.6, 130.4, 134.4, 135.3, 135.5, 138.3, 143.2, 143.5, 155.0, 155.6. Anal. Calcd for C₅₅H₆₁N₇O₁₀S₅: C, 57.93; H, 5.39; N, 8.60. Found: C, 57.90; H, 5.37; N, 8.58.

2,5,8,11,14-Pentaaza[15]-[15](2,2')[1,15]-bipyridylophane Pentahydrobromide (14·5HBr). This compound was synthesized from **11** (2.28 g, 2 mmol) following the procedure reported for **13** obtaining pure **14·5HBr** as a colorless solid (1.1 g, 71%). ¹H NMR (D₂O, pH = 11): δ (ppm) 3.52 (t, 4H), 3.54 (t, 4H), 3.72 (t, 4H), 3.73 (t, 4H), 4.77 (s, 4H), 7.82 (dd, 2H), 8.31 (dd, 2H), 8.36 (dd, 2H). ¹³C NMR (D₂O pH = 11): δ (ppm) 44.7, 44.9, 45.1, 45.5, 52.2, 125.1, 127.1, 142.8, 150.9, 153.9. MS *m/z* 371 ([M + H]⁺). Anal. Calcd for C₂₀H₃₆N₇Br₅: C, 31.03; H, 4.69; N, 12.67. Found: C, 31.3; H, 4.7; N, 12.8.

2,5,8,11,14,17-Hexatosyl-2,5,8,11,14,17-hexaaza[18]-[18]-(2,2')[1,18]-bipyridylophane (12). This compound was synthesized from **9** (5.78 g, 5 mmol) and **5** (1.66 g, 5 mmol) following the procedure reported for **11** (1.87 g, 28%). ¹H NMR (CDCl₃): δ (ppm) 2.37 (s, 6H), 2.42 (s, 6H), 2.44 (s, 6H), 2.83 (s, 4H), 2.89 (m, 4H), 2.94 (m, 4H), 3.21 (m, 4H), 3.34 (m, 4H), 4.49 (s, 4H), 7.29 (m, 16H), 7.60 (d, 4H), 7.69 (d, 4H), 7.75 (d, 4H), 7.92 (d), 2H); ¹³C NMR (CDCl₃): δ (ppm) 21.6, 47.5, 48.9, 49.5, 49.7, 49.9, 55.0, 120.2, 123.3, 127.5, 127.6, 127.7, 129.9, 134.8, 134.9, 135.3, 138.0, 143.4, 143.7, 154.9, 155.3. Anal.Calcd for C₆₄H₇₂N₈O₁₂S₆: C, 57.47; H, 5.43; N, 8.38. Found: C, 57.45; H, 5.40; N, 8.35

2,5,8,11,14,17-Hexaaza[18]-[18](2,2')[1,18]-bipyridylophane Hexahydrobromide (15·6HBr). This compound was synthesized from **12** (1.87 g, 1.4 mmol) following the procedure reported for **13**, obtaining pure **15·**6HBr as a colorless solid (0.72 g, 57%). ¹H NMR (D₂O, pH = 11): δ (ppm) 3.29 (m, 8H), 3.42 (m, 8H), 3.57 (s, 4H), 4.66 (s, 4H), 7.65 (d, 2H), 8.13 (t, 2H), 8.34 (d, 2H). ¹³C NMR (D₂O pH = 11): δ (ppm) 43.6, 43.8, 44.5, 44.9, 45.8, 52.3, 124.0, 126.9, 141.2, 150.8, 156.2. MS *m*/z 414 ([M + H]⁺) Anal. Calcd for C₂₂H₄₂N₈Br₆: C, 29.42; H, 4.71; N, 12.48. Found: C, 29.40; H, 4.70; N, 12.46

Cryptand 3 ([Na \subset **3]Br).** A solution of **5** (2.84 g, 8.3 mmol) in dry CH₃CN (200 cm³) was added over a period of 6 h to a refluxing and vigorously stirred suspension of **13**·6HBr (7.45 g, 8.3 mmol) and Na₂CO₃ (8.5 g, 0.08 mol) in CH₃CN (400 cm³). After the addition was completed, the solution was refluxed for additional 2 h. The resulting suspension was filtered out, and the solution was vacuum evaporated to give a crude solid. The product was chromatographed on neutral alumina (CHCl₃) The eluted fractions were collected and vacuum evaporated to afford [Na \subset **3**]Br as a colorless solid, which was recrystallized from a CHCl₃:cyclohexane 1:1 mixture. Yield: 1.2 g (20.8%). ¹H NMR (CDCl₃): δ (ppm) 2.05 (s, 6H), 2.51 (b, 4H), 2.55 (s, 3H), 2.62 (m, 2H), 2.77 (t, 4H), 3.12 (b, 4H), 3.59 (b, 2H), 3.77 (d, 4H), 3.96 (d,

⁽²⁴⁾ Stability constants of the Li⁺, Na⁺, and K⁺ complexes with **3** and **4**, determined by means of potentiometric measurements: $[[\text{Li}\subset\mathbf{3}]^+]$, log K = 3.4(1); $[[\text{Na}\subset\mathbf{3}]^+]$, log K = 7.0(1); $[[\text{K}\subset\mathbf{3}]^+]$, log K = 3.6(1); $[[\text{Li}\subset\mathbf{4}]^+]$, log K = 3.6(1); $[[\text{Na}\subset\mathbf{4}]^+]$, log K = 7.1(1); $[[\text{K}\subset\mathbf{4}]^+]$, log K = 4.0(1) ($K = [[\text{M}\subset\mathbf{L}]^+]/[\text{M}][\mathbf{L}]$, $\mathbf{L} = \mathbf{3}$ or **4**). The potentiometric measurements were performed at 298.1 K in 0.1 M NMe₄Cl by using the method and procedure from ref 5.

4H), 7.35 (m, 4H), 7.88 (m, 8H); 13 C NMR (CDCl₃): δ (ppm) 42.3, 42.9, 53.8, 53.9, 54.8, 55.0, 61.1, 120.5, 124.6, 138.8, 154.6, 158.9. MS *m*/*z* 614 ([M + Na]⁺) Anal. Calcd for C₃₅H₄₅N₉NaBr: C, 60.51; H, 6.53; N, 18.15; Br, 11.38; Na, 3.31. Found: C, 60.73; H, 6.60; N, 18.25; Br, 11.22; Na, 3.24.

[Na⊂**3]ClO**₄. Addition of NaClO₄·H₂O (5 g, 35 mmol) to an aqueous solution (10 cm³, pH 11) of [Na⊂**3**]Br (1.0 g, 1.4 mmol) leads to the precipitation of [Na⊂**3**]ClO₄, as a white solid (0.93 g, 93%). ¹H NMR (CDCl₃): δ (ppm) 2.05 (s, 6H), 2.51 (m, 4H), 2.68 (m, 7H), 2.78 (t, 4H), 3.13 (m, 4H), 3.78 (d, 4H), 7.36 (dd, 4H), 7.85 (d, 4H), 7.94(dd, 4H); ¹³C NMR (CDCl₃): δ (ppm) 42.26, 42.89, 53.84, 54.75, 61.06, 120.49, 124.59, 138.75, 154.61, 158.79. MS *m*/*z* 614 ([M + Na]⁺) Anal. Calcd for C₃₅H₄₅N₉NaClO₄: C, 58.86; H, 6.35; N, 17.65. Found: C, 59.02; H, 6.42; N, 17.74

3·5HClO₄. Slow addition of a 20% ethanolic solution of HClO₄ to a solution of [Na⊂3]ClO₄ in ethanol leads to the formation, in almost quantitative yield, of the pentaperchlorate salt **3·**5HClO₄, as a white precipitate.¹H NMR (D₂O, pH = 2): δ(ppm) 2.39 (s, 3H), 3.04 (s, 6H), 3.07 (t, 4H), 3.56 (t, 4H), 3.62 (m, 4H), 3.74 (m, 4H), 4.30 (d, 4H), 4.55 (d, 4H), 7.57 (dd, 4H), 7.97 (m, 8H); ¹³C NMR (D₂O pH = 2): δ(ppm) 40.9, 42.7, 51.8, 52.5, 52.8, 54.6, 61.0, 126.3, 128.8, 144.5, 146.9, 156.5. MS *m*/*z* 591 ([M + H]⁺) Anal. Calcd for C₃₅H₅₀N₉Cl₅O₂₀: C, 38.42; H, 4.61; N, 11.52. Found: C, 38.41; H, 4.63; N, 11.50.

[K⊂**3]Br.** The K⁺ complex with **3** was obtained as reported for [Na⊂**3**]Br, by performing the cyclization in the presence of K₂CO₃. Yield: 0.7 g (12.0%); MS *m*/*z* 630 ([M + K]⁺). Anal. Calcd for C₃₅H₄₅N₉KBr: C, 59.14; H, 6.38; N,17.73; Br, 11.13; K, 5.50. Found: C, 59.30; H, 6.43; N, 17.83; Br, 10.95; K, 5.63.

Cryptand 4 ([Na \subset **4]Br).** This complex was synthesized from **13**·6HBr (7.45 g, 8.3 mmol) and **6** (3.0 g, 8.3 mmol) following the procedure reported for **3**. Yield: 1.43 g (24%). ¹H NMR (CDCl₃) δ 2.37 (s, 3H), 3.13 (s, 6H), 3.21 (t, 4H), 3.75 (t, 4H), 3.79 (m, 4H), 4.03 (m, 4H), 4.35 (d, 2H), 4.49 (d, 2H) 4.62 (d, 2H), 4.75 (d, 2H), 7.66 (d, 4H), 7.80 (d, 2H), 7.92 (m, 2H), 8.12

(s, 2H), 8.43 (d, 2H); ¹³C NMR (CDCl₃) δ 42.4, 45.1, 50.7, 51.8, 52.5, 55.5, 62.2, 120.6, 125.3, 127.2, 128.9, 129.7, 144.0, 145.5, 146.1, 147.5, 156.1, 158.8. MS *m*/*z* 638 ([M + Na]⁺). Anal. Calcd for C₃₇H₄₅N₉NaBr: C, 61.83; H, 6.31; N, 17.54; Br, 11.00. Na, 3.20. Found: C, 61.76; H, 6.25; N, 17.44; Br, 10.84; Na, 3.31.

[Na⊂4]ClO₄. The perchlorate Na⁺ complex was obtained from [Na⊂4]Br as reported for [Na⊂3]ClO₄. Yield: 1.0 g (97%).¹H NMR (CDCl₃): δ 2.35 (s, 3H), 3.15 (s, 6H), 3.24 (t, 4H), 3.75 (m, 8H), 4.07 (m, 4H), 4.40 (d, 2H), 4.62 (d, 2H), 7.66 (d, 4H), 7.77 (d, 2H), 7.93 (m, 2H), 8.12 (s, 2H), 8.45 (d, 2H); ¹³C NMR (CDCl₃) δ 42.7, 45.3, 50.6, 51.8, 52.5, 55.7, 62.0, 120.4, 125.1, 127.1, 129.1, 129.7, 144.3, 145.5, 146.0, 147.6, 156.0, 159.0. MS *m*/*z* 638 ([M+Na]⁺). Anal. Calcd for C₃₇H₄₅N₉NaClO₄: C, 60.20; H, 6.14; N, 17.07. Found: C, 60.28; H, 6.21; N, 17.17.

4·5HClO₄. The hydroperchloric salt of **4** was obtained, in almost quantitative yield, as reported for **3·**5HClO₄. ¹H NMR (D₂O, pH = 2): δ (ppm) 2.49 (s, 3H), 3.11 (s, 6H), 3.18 (t, 4H), 3.64 (t, 4H), 3.76 (m, 4H), 3.94 (m, 4H), 4.40 (d, 2H), 4.56 (d, 2H), 4.63 (d, 2H), 4.67(d, 2H), 7.65 (d, 4H), 7.84 (d, 2H), 7.99 (m, 2H), 7.98 (s, 2H), 8.54 (d, 2H); ¹³C NMR (D₂O pH = 2): δ (ppm) 40.7, 43.0, 52.0, 52.8, 52.9, 54.1, 61.5, 122.9, 126.6, 128.4, 128.8, 129.5, 143.0, 144.5, 146.2, 147.2, 155.1, 156.8. MS *m*/*z* 615 ([M + H]⁺) Anal. Calcd for C₃₇Cl₅H₅₀N₉O₂₀: C, 39.75; H, 4.51; N, 11.27. Found: C, 39.76; H, 4.53; N, 11.29.

[K⊂**4]Br.** The K⁺ complex with **4** was obtained as reported for [Na⊂**4**]Br, by performing the cyclization in the presence of K₂CO₃. Yield: 0.63 g (10.3%) MS *m*/*z*654 ([M + K]⁺). Anal. Calcd for C₃₇H₄₅N₉KBr: C, 60.48; H, 6.17; N, 17.15; Br, 10.86; K, 5.32. Found: C, 60.59; H, 6.23; N, 17.10; Br, 10.72; K, 5.25.

Acknowledgment. This work has been supported by the Italian Ministero dell'Università e della Ricerca Scientifica e Tecnologica (MURST, Rome) within the program COFIN 98.

JO000931T